Problème 16

Soient k un nombre réel et a, b et c trois réels strictement positifs. **Sans perte de généralité**, le carré suivant est un prototype conforme aux contraintes de l'énoncé sur les valeurs respectives des coins :

k		k+a
k+a+2b		k+c

Si S est la somme commune des lignes, colonnes, diagonales, en exprimant la valeur de la case centrale pour les deux diagonales, il vient :

case centrale = S - (k+a) - (k+a+2b) = S - k - (k+c) d'où c = 2a+2b

cuse centrare B (K+a) (K+a+20) B K (K+c) a ca c 2a+20		
k		k+a
	S-2k-2a-2b	
k+a+2b		k+2a+2b

En calculant la valeur centrale des colonnes 1 et 3 :

k		k+a
S-2k-a-2b	S-2k-2a-2b	S-2k-3a-2b
k+a+2b		k+2a+2b

En sommant la deuxième ligne :

S=(S-2k-a-2b)+(S-2k-2a-2b)+(S-2k-3a-2b) d'où S=3k+3a+3b

Le carré peut-être définitivement complété :

k	k+2a+3b	k+a
k+2a+b	k+a+b	k+b
k+a+2b	k-b	k+2a+2b

Et là, deux cas:

Si a < b:

k-b < k < k+a < k+b < k+a+b < k+2a+b < k+a+2b < k+2a+2b < k+2a+3b

Solution 1:

В	I	C
F	E	D
G	A	Н

Si a > b

k-b < k < k+b < k+a < k+a+b < k+a+2b < k+2a+b < k+2a+2b < k+2a+3b

Solution 2:

В	I	D
G	Е	С
F	A	Н

Il est clair qu'il existe des solutions en nombres entiers positifs, par exemple (a,b,k) = (1,2,3) et (a,b,k)=(2,1,2)

Si a=b, il existe des cases égales, ce qui est interdit.